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Abstract

This article studies the aerodynamic induced vibration of stay cables (in cable-stayed bridges) under the
combined effect of light wind and rain in terms of a section model with a dynamic rivulet oscillating on a
moving cable perimeter in a steady wind. The motion of the cable section is coupled with the motion of the
rivulet via aerodynamic fluid–structure interactions. These complex interactions are modelled in two
distinct ways and the resulting cable motions compared. The first employs an approximation that permits
the use of data extrapolated from wind-tunnel measurements. The second approaches the aerodynamic
interaction in terms of a sub-critical vortex description. In the first approach the stability of the linearized
system is reduced to a six-dimensional eigenvalue problem and the dependence of the eigenvalues are
explored numerically as a function of parameters that enter into the model. The predictions of the model
rely on measured data for drag, lift and torque coefficients for fixed experimental cylinders with attached
artificial rivulets, and data for the equilibrium location of rain-induced rivulets. In the second approach the
dynamical evolution of the non-linear system of differential equations is explored and the results compared
with those obtained in the first model. The results offer a useful means to understand how rain-wind
induced vibrations of stay cables can arise and persist in terms of more realistic models than have been
considered before in the literature.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Long stay cables are important structural components of cable-stayed bridges. Due to their
large flexibility and small structural damping, they are prone to vibration induced by motion of
their supports and/or aerodynamic forces such as wind and rain loadings. Under the simultaneous
occurrence of light-to-moderate wind and rain, large amplitude vibrations of stay cables have
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been observed in a number of cable-stayed bridges worldwide [1–4]. The mechanism leading to
rain-wind induced vibration in stay cables has recently become of concern to bridge engineers and
scientists in various countries, (see, for example, Refs. [5–11] and the references cited therein).
Following the experimental investigations of Matsumoto et al. [6,9,12], aerodynamic instabilities
of cables have been roughly divided into galloping motions and vortex-induced oscillations at
reduced wind velocities U=fD between 40 and 80, where U is the wind speed, f (in Hz) a structural
vibration frequency and D the diameter of the cable.
In a recent paper [11], a simple stochastic model that offers some insight into this mechanism

has been constructed. Attention therein was drawn into the recent work that had been devoted to
this problem [1,5,7,8,13] and its relation to earlier galloping mechanisms proposed by Den Hartog
[14] and others [15–22]. It focused on the asymmetric cable section profile produced by the
existence of a mobile rain rivulet on its surface and the corresponding induced aerodynamic
forces. In that model the motion of the rivulet was assumed to be produced by a simple stochastic
band-pass process that accommodated the steady state rivulet motion observed in static tests and
led to a model exhibiting stochastic resonance. The steady stochastic response amplitude
depended not only on aerodynamic coefficients and structural damping but also on certain filter
parameters of ; xf and S0: Such parameters had to be determined from an effective power spectral
density of the moving rivulet, measured from wind-rain tunnel tests and/or field measurements.
A more realistic approach would be to model the motion of the rivulet from the complex

dynamics involving the boundary layers between the cable, rivulet and air. In this article a new,
more physically motivated dynamic process is offered that couples the two-dimensional motion of
a cable section to the motion of the rivulet. The model involves a complex fluid–structure
interaction that is approximated in two distinct ways. The first employs an approximation that
permits the use of data extrapolated from wind-tunnel measurements. The second approaches the
aerodynamic interaction in terms of a sub-critical vortex description. In the first approach the
stability of the linearized system is reduced to a six-dimensional eigenvalue problem and its
eigenvalues are explored numerically as a function of parameters that enter into the model. The
predictions of the model rely on measured data for drag, lift and torque coefficients for fixed
experimental cylinders with attached artificial rivulets, and data for the equilibrium location of
rain-induced rivulets. In the second approach the dynamical evolution of the non-linear system of
differential equations is explored using an explicit vortex-tracking method and the results
compared with those obtained in the first approximation. The results offer a useful means to
understand how rain-wind induced vibrations of stay cables can arise and persist in terms of more
realistic models than have been considered before in the literature. Although the formation of the
rivulet by light rain will continue to require a stochastic element in a full description, this can in
principle be included at the linear level along the lines given in [11].
Although intensive efforts have been made to investigate the phenomenon of rain-wind-induced

vibrations of stay cables through wind tunnel tests, the analytical study of the growth mechanism
of such a phenomenon is rare since the detailed motion of a cable with oscillating rivulets under
wind forces is non-trivial. It involves the analysis of the equations of multi-phase fluid dynamics, a
model for accretion and fluid–solid adhesion and the continuum mechanics of an elastic structure.
Without detailed experimental information (or expensive time consuming computational fluid
dynamic simulations) it is difficult to assess how rivulet formation on cylinders modifies the
subsequent aerodynamic flow around them particularly when the cylinder moves relative to the
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inflow fluid field [23]. However, in low ambient wind speeds, experiments with an artificial mobile
rivulet on a fixed cylinder subject to aerodynamic loading do indicate an approach to a steady
rivulet oscillation. In any mathematical model, once the profile of the rivulet is decided and its
initial location on the cylinder ascertained one is confronted with the problem of estimating the
aerodynamic forces and torque on an asymmetric structure. Wind tunnel tests on fixed cylinders
for various fixed rivulet configurations and wind speeds offer data for static configurations,
providing lift, drag and torque coefficients relative to the ambient wind tunnel velocity. In order
to estimate these coefficients for a moving cylinder with a mobile rivulet relative to its
circumference the simple strategy of using these coefficients in a certain co-moving frame derived
from the dynamics of the moving cylinder section is adopted.
It is found that, after linearization, such an approximation leads to an eigenvalue problem that

controls the onset of large amplitude vertical cable oscillations initiated by the oscillation of a
single (upper) rivulet along the cable surface. Such a rivulet oscillation occurs only when
the effective stiffness relating aerodynamic torque to the location of the rivulet on the cable
surface, is positive. The use of wind-tunnel data for the aerodynamic drag, lift and torque
coefficients on cylinders with various rivulets at fixed positions enables one to explore how the
above eigenvalue spectrum of the system varies with parameters in the model. Time histories
resulting from this linearized model for different values of various parameters are then calculated
and discussed.
In order to go beyond the linearized level a more refined model of the fluid–structure interaction

is deemed necessary. For sub-critical air flow in the vicinity of the cable (light wind) this can be
attempted by a combination of simple boundary-layer modelling and a vortex description of
boundary layer separation and subsequent convection of vorticity. Using analytic expressions for
the fluid flow field due to a dynamic set of point vortices the pressure on a cable section is
estimated due to the emission of such vortices. In this way one obtains a more reliable non-linear
description of the dynamics of the moving cable in the presence moving rivulets. Such a model can
then be solved numerically beyond the linear approximation considered in the first approach.

2. Model of a cable with a single rivulet

Consider first a spring-supported section model with a single artificial rivulet moving on its
upper surface, as shown in Fig. 1. Although rivulets along both upper and lower cable surfaces
have been observed in the case of rain-wind vibrations it is generally believed that the upper one is
the dominant one in inducing cable vibration [1,5]. The cable, exposed to a steady wind of velocity
U blowing from left to right, has a mass m per unit length and, in the section model, is supported
by springs with coefficients kx; ky and dampers with damping coefficients cx; cy in the horizontal
and vertical directions, respectively. The rivulet has a mass mr per unit length and is bound to the
cable surface by the combined actions of the wind, gravitational, friction and dynamic adhesive
forces. In a section model the incoming steady wind is normal to the horizontal axis of the
cylinder and the motion of the rivulet is independent of which section is taken. The transverse size
of the rivulet is assumed to be small compared with the diameter of the cylinder.
Let fi; j; kg be the inertial frame with fixed origin as shown in Fig. 1. With A denoting the

instantaneous centre of a cable section (restricted to the i; j plane) and B locating the
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instantaneous rivulet section on its circumference, define position vectors:

RAðTÞ ¼ X ðTÞiþ Y ðTÞj;

RABðTÞ ¼ �R cosjðTÞiþ R sin jðTÞj;

RBðTÞ ¼ RAðTÞ þ RABðTÞ

¼ ðX ðTÞ � R cosjðTÞÞiþ ðY ðTÞ þ R sin jðTÞÞj; ð1Þ

where T denotes time, R is constant, and j is measured clockwise from the wind direction as
shown.
The motion of the rivulet is determined by forces due to gravity, fluid–surface adhesion and

friction, aerodynamic pressure and the reaction due to the motion of the cylinder to which it is
attached. The latter, in turn, responds to gravity, aerodynamic pressure, mechanical forces and the
contact reaction due to the rivulet. The aerodynamic torque on the rivulet section about its geometric
centre is expected to be small and the torsional stiffness of the cable is sufficient to prevent significant
angular motion of the disc about its centre. The equation of motion for the rivulet centre B is

mr
d2RB

dT2
¼ fp þ FþNþ fad þ mrg; ð2Þ

where fp is the total specific (i.e., per unit length) aerodynamic pressure force on the rivulet, F is a
specific friction force tangent to the local surface of contact between rivulet and cylinder, N is the
specific contact reaction on the rivulet directed along the outward normal to this surface and fad is a
specific adhesion force on the rivulet directed opposite to N: The equation for the motion of the disc
centre A is

m
d2RA

dT2
¼ Fp � F�N� fad þ Kþ mg; ð3Þ

where Fp is the total specific aerodynamic pressure force on the disc (excluding the rivulet) and K is
the total specific mechanical force (including dampers) on it.
If the specific aerodynamic torque on the disc about an axis parallel to k through its centre is

Mp and K is the specific mechanical torque on the disc about the same axis then it can execute
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angular motion with angular velocity oAðTÞk determined by

IA
doA

dT
k ¼Mp þ K þ RAB � F ð4Þ

in terms of the specific moment of inertia IA: Assume that torsional stiffness and damping inK is
sufficient to suppress all angular motion about A and take oAðTÞ ¼ 0:
The aerodynamic vectors FpðTÞ; fpðTÞ;MpðTÞ in (2), (3) and (4) arise from the fluid dynamics of

air in the presence of moving boundaries. First model these in terms of specific forces FTot and
torques MTot that may be related to wind tunnel measured data for fixed cylinders with fixed
(artificial) rivulets. The relation of the orientation of such configurations (with fixed points A and
B) to instantaneous configurations given by RAðTÞ and RBðTÞ will be discussed below. Clearly this
procedure is only justified if the aerodynamic flow field around fixed configurations does not
depart too much from that around moving configurations with mobile rivulets.
Under these conditions assume

FTotEFp þ fp; MTotEMp þmp ð5Þ

where the total aerodynamic force and torque about A; acting on the disc and rivulet are
decomposed into components acting on the disc section and rivulet, respectively. If the pressure
field around the rivulet does not vary much further assume that

mpERAB � fp; ð6Þ

where fp acts on the transverse centroid of the rivulet. Since the pressure force at any point on the
disc section boundary is directed toward A then Mp ¼ 0 and so

MTotEmpERAB � fp: ð7Þ

With these approximations one may relate components of the vectors Fp and fp to the vectors F
Tot

andMTot: Thus if n denotes the unit vector in the direction of N and s is a unit vector tangential to
the surface of the disc such that n� s ¼ k; with RAB ¼ Rn and fp ¼ f ðnÞ

p nþ f ðtÞ
p s; it follows that

Fp ¼ FTot � f ðnÞ
p n�

MTot

R
s;

fp ¼ f ðnÞ
p nþ

MTot

R
s; ð8Þ

where MTot is the modulus of the torque MTot: Inserting these into (2) and (3) gives

m
d2RA

dT2
¼ FTot � F þ K� N þ mg;

mr
d2RB

dT2
¼ F þ N þ mrg; ð9Þ

where the tangential force F and the normal force N are

F ¼ F þ
MTot

R

� �
s

N ¼ N þ fad þ f ðnÞ
p

� �
n ð10Þ
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with F ¼ Fs; N ¼ Nn and fad ¼ fadn: Once a friction law for F is specified Eq. (9) can be solved
for RAðTÞ; RBðTÞ and N ðTÞ in terms of data determining FTot and MTot:
The force K includes the cable restoring force and damping. Assume that the original position

of the point A (where the effective springs are un-deformed) is expressed as

#RA ¼ #Xiþ #Yj ð11Þ

for constants #X and #Y: Then

K ¼ � kxðX � #XÞ þ cx

dX

dT

� �
i� kyðY � #YÞ þ cx

dX

dT

� �
j; ð12Þ

where kx and ky denote constant horizontal and vertical stiffness parameters per unit length, and
cx and cy denote constant structural damping parameters.
To proceed one must determine the vectors FTot and MTot as functions of the dynamic

configuration of the disc and rivulet. Without fluid dynamic modelling recourse must be made to
measured data. Unfortunately wind tunnel data often appears to be time averaged and restricted
to cylinders where the relative motion of disc and rivulet is zero. This poses a severe limitation for
the subsequent analysis of this dynamic model. Nevertheless since the initial concern is with the
linearization of the equations of motion for X ðTÞ; Y ðTÞ and jðTÞ about an equilibrium
configuration in light wind conditions, it will be supposed that such a limitation need not inhibit
further linear analysis. The strategy will be to define, for each T ; a transformation to a wind
tunnel frame of reference in which the flow field around a model with a fixed cylinder and fixed
rivulet resembles as closely as possible an instantaneous flow field around the moving disc with a
mobile rivulet. Clearly, away from equilibrium, there is no Galilean transformation on the
dynamic disc-rivulet configuration that can identify a frame in which the velocity of the point A
relative to B remains zero. In general one can apply such a transformation to a wind tunnel frame
in which some preferred point C in the section model has zero velocity. The choice of C must be
based on expediency. Reasons will be given below for the preferred choice CCA:
In the following all quantities measured in a wind tunnel will be denoted with a 4 symbol. Thus

the sum of the specific lift and drag on a fixed cylinder with centre #A with a fixed rivulet with
transverse centroid #B is denoted #FTot: Similarly the specific torque on it is denoted #MTot: Let C be
located at RC in the inertial frame fi; j; kg somewhere between A and B: Then in a frame moving
with velocity dRCðTÞ=dT relative to this inertial frame the point C will be instantaneously at rest.
In such a frame the wind will have velocity Ur ¼ U� dRC=dT : To proceed assume that, for a
choice of C:

FTotC #FTot; MTotC #MTot: ð13Þ

Suppose #a denotes the angle (in the aerodynamic sense) between the wind tunnel inflow vector
#U ¼ Ur and the direction #A #B locating the fixed artificial rivulet and the Clð#aÞ;Cdð#aÞ;Cmð#aÞ denote
the lift, drag and moment coefficients defined in the conventional manner:

#FTot ¼ #f Tot
d þ #f Tot

l ¼ #f Tot
d g þ #f Tot

l f; ð14Þ
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where g denotes the unit vector in the direction of #U and f is a unit vector orthogonal to g such
that g � f ¼ k: Thus the modulus #f Tot

d ; #f Tot
l and #MTot of vectors #f Tot

d ; #f Tot
l and #MTot are

#f Tot
d ¼ 1

2
raD #U2Cd ð#aÞ; #f Tot

l ¼ 1
2
raD #U2Clð#aÞ; #MTot ¼ 1

2
raD2 #U2Cmð#aÞ; ð15Þ

where #U is the modulus of the vector #U and D ¼ 2R:
In terms of the characteristic radius Rc ¼ jRACðTÞj ¼ AC

RACðTÞ ¼ �Rc cosjðTÞiþ Rc sin jðTÞj;

RCðTÞ ¼ RAðTÞ þ RACðTÞ

¼ ðX ðTÞ � Rc cos jðTÞÞiþ ðY ðTÞ þ Rc sin jðTÞj: ð16Þ

The characteristic relative velocity Ur is given in terms of the inflow velocity of the wind U and the
velocity of the characteristic point C in the original inertial frame:

U ¼ UrðTÞ þ
dRcðTÞ
dT

¼ U i: ð17Þ

The modulus Ur of Ur and the angle b as shown in Fig. 2 follow as

U2
r ¼ U �

dX

dT
� Rc

dj
dT

sin j
� �2

þ
dY

dT
þ Rc

dj
dT

cosj
� �2

;

tan b ¼
dY
dT

þ Rc
dj
dT
cosj

U � dX
dT

� Rc
dj
dT
sinj

: ð18Þ

The angle of attack #a in the wind tunnel is simply related to the angle b between U and Ur (see
Fig. 2(b)):

#a ¼ j� b: ð19Þ

Thus one has Ur and b as functions of j;dj=dT ;dX=dT ; dY=dT ;U ;Rc and similarly for j #Uj
and #a that connect the data in the aerodynamic coefficients Cl ;Cd ;Cm to the dynamical variables
for given U and Rc:
Taking notice of

n ¼ � cosjiþ sin jj; g ¼ cos bi� sin bj;

s ¼ �sin ji� cosjj; f ¼ sin b iþ cos b j ð20Þ
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and substituting (1), (10), (12), (13) and (14) into the equations of motion (9) yields:

m
d2X

dT2
þ cx

dX

dT
þ kxðX � #XÞ

¼ #f Tot
d cos bþ #f Tot

l sin bþ F þ
MTot

R

� �
sinjþ ðN þ fad þ f ðnÞ

p Þ cosj;

m
d2Y

dT2
þ cy

dY

dT
þ kyðY � #YÞ

¼ � #f Tot
d sin bþ #f Tot

l cos bþ F þ
MTot

R

� �
cosj� ðN þ fad þ f ðnÞ

p Þ sinj� mg;

mr
d2X

dT2
þ mrR

d2j
dT2

sin jþ mrR
dj
dT

� �2
cosj

¼ �ðN þ fad þ f ðnÞ
p Þ cosj� F þ

MTot

R

� �
sinj;

mr
d2Y

dT2
þ mrR

d2j
dT2

cosj� mrR
dj
dT

� �2
sin j

¼ ðN þ fad þ f ðnÞ
p Þ sin j� F þ

MTot

R

� �
cosj� mrg: ð21Þ

From the last two equations of (21), the normal force follows as

N ¼ðN þ fad þ f ðnÞ
p Þn

¼ mr g þ
d2Y

dT2

� �
sin j� mr

d2X

dT2
cosj� mrR

dj
dT

� �2 !
n: ð22Þ

Substituting (22) into (21) then gives

ðm þ mrÞ
d2X

dT2
þ mrR

d2j
dT2

sin jþ mrR
dj
dT

� �2
cosjþ cx

dX

dT
þ kxðX � #XÞ

¼ #f Tot
d cos bþ #f Tot

l sin b;

ðm þ mrÞ
d2Y

dT2
þ mrR

d2j
dT2

cos j� mrR
dj
dT

� �2
sin jþ cy

dY

dT
þ kyðY � #YÞ

¼ � #f Tot
d sin bþ #f Tot

l cos b� ðm þ mrÞg;

mr
d2X

dT2
sin jþ mr

d2Y

dT2
cosjþ mrR

d2j
dT2

¼ �F �
MTot

R
� mrg cosj: ð23Þ

With o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx=ðm þ mrÞ

p
; introduce the following non-dimensional quantities:

g ¼

ffiffiffiffiffi
ky

kx

s
; t ¼ oT ; m1 ¼

mr

2ðm þ mrÞ
;
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xx ¼
cx

2ðm þ mrÞo
; xy ¼

cy

2ðm þ mrÞgo
;

x ¼
X

D
; y ¼

Y

D
; #x ¼

#X

D
; #y ¼

#Y

D
: ð24Þ

Then (23) can be written as the system:

.x þ m1 .j sinjþ m1 ’j
2 cosjþ 2xx ’x þ x

¼ #x þ
#f Tot
d cos bþ #f Tot

l sin b
ðm þ mrÞDo2

;

.y þ m1 .j cos j� m1 ’j
2 sin jþ 2xyg ’y þ g2y

¼ g2 #y þ
#f Tot
l cos b� #f Tot

d sin b
ðm þ mrÞDo2

�
g

Do2
;

.jþ 2 .x sin jþ 2 .y cosj ¼ �
RF þ #MTot

mrR2o2
�

2g

Do2
cosj; ð25Þ

where ð
Þ denotes differentiation with respect to the dimensionless time parameter t:
Let fðtÞ ¼ jðtÞ � j0; where fðtÞ defines the fluctuation angle of an oscillating rivulet around an

equilibrium location angle j0 on the cable perimeter. Assume that the friction force F can be
written

F ¼ F0 þ cf
df
dT

¼ F0 þ cfo ’f; ð26Þ

where the constant

F0 ¼ �mrg cosj0 � raDU2Cmðj0Þ ð27Þ

ensures that j ¼ j0 is an equilibrium position. The constant cf is related to the thickness of the
rivulet, the density of the liquid, the surface roughness and the surface material of the cable.
For convenience introduce fx and fy as

fx ¼ #f Tot
l sin bþ #f Tot

d cos b ¼ 1
2
raDU2

r ðClð#aÞ sin bþ Cd ð#aÞ cos bÞ;

fy ¼ #f Tot
l cos b� #f Tot

d sin b ¼ 1
2
raDU2

r ðClð#aÞ cos b� Cd ð#aÞ sin bÞ; ð28Þ

where the angle of attack #aðj; bÞ ¼ j� b; and where the dynamic relative wind angle b is a
function of j; ’x; ’y and ’j: Substituting (18) into (28) and expanding the dynamic forces
fxðf; ’x; ’y; ’fÞ; fyðf; ’x; ’y; ’fÞ and #MTotðf; ’x; ’y; ’fÞ as a Taylor expansion with respect to the variables
ðf; ’x; ’y; ’fÞ about the equilibrium ð0; 0; 0; 0Þ (i.e., #a ¼ j0), yields:

fxðf; ’x; ’y; ’fÞ ¼ 1
2
raDU2½Cdðj0Þ þ C0

dðj0Þf

þ 1
2
raoDRcU ½ðClðj0Þ � C0

dðj0ÞÞ cos j0 � 2Cdðj0Þ sin j0 ’f

� 1
2
raoD2U ½2Cdðj0Þ ’x � ðClðj0Þ � C0

dðj0ÞÞ ’y þ hxðf; ’x; ’y; ’fÞ; ð29Þ
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fyðf; ’x; ’y; ’fÞ ¼ 1
2 raDU2½Clðj0Þ þ C0

l ðj0Þf

� 1
2
raoDRcU ½ðCdðj0Þ þ C0

lðj0ÞÞ cosj0 þ 2Clðj0Þ sin j0 ’f

� 1
2
raoD2U ½2Clðj0Þ ’x þ ðCdðj0Þ þ C0

l ðj0ÞÞ ’y þ hyðf; ’x; ’y; ’fÞ; ð30Þ

#MTotðf; ’x; ’y; ’fÞ ¼ � 1
2
raD2U2½Cmðj0Þ þ C0

mðj0Þf

þ 1
2
raoD2RcU ½C0

mðj0Þ cosj0 þ 2Cmðj0Þ sin j0 ’f

þ 1
2
raoD3U ½2Cmðj0Þ ’x þ C0

mðj0Þ ’y þ hmðf; ’x; ’y; ’fÞ; ð31Þ

where ð0Þ denotes differentiation with respect to the angle #a: The terms hxðf; ’x; ’y; ’fÞ; hyðf; ’x; ’y; ’fÞ
and hmðf; ’x; ’y; ’fÞ contain non-linear functions of f; ’x; ’y; ’f:
Let z ¼ ½x; y; fT and

m2 ¼
g

Ro2
; xf ¼

cf

2mrRo
; m3 ¼

raDU

2ðm þ mrÞo
;

m4 ¼
2raDU

mro
; m5 ¼

Rc

D
m6 ¼

U

oD
; ð32Þ

so that (25) can be written as

Gm.zðtÞ þGd ’zðtÞ þGkzðtÞ ¼ bþ hðz; ’zÞ; ð33Þ

where hðz; ’zÞ is a non-linear vector function representing second and higher order terms in f; ’x; ’y
and ’f;

Gm ¼

1 0 m1 sin j0
0 1 m1 cosj0

2 sin j0 2 cosj0 1

2
64

3
75;

Gk ¼

1 0 �m3m6C
0
dðj0Þ

0 g2 �m3m6C
0
lðj0Þ

0 0 m4m6C
0
mðj0Þ � m2 sin j0

2
64

3
75;

b ¼

#x þ m3m6Cd ðj0Þ

g2 #y þ m3m6Clðj0Þ �
1
2
m2

0

2
64

3
75; ð34Þ

and

Gd ¼

2xx þ 2m3Cd ðj0Þ m3ðC
0
dðj0Þ � Clðj0ÞÞ

2m3Clðj0Þ 2xygþ m3ðCd ðj0Þ þ C0
lðj0ÞÞ

�2m4Cmðj0Þ �m4C
0
mðj0Þ

2
64

m3m5½2Cdðj0Þ sin j0 þ ðC0
dðj0Þ � Clðj0ÞÞ cosj0

m3m5½2Clðj0Þ sin j0 þ ðCdðj0Þ þ C0
l ðj0ÞÞ cosj0

2xf � m4m5½2Cmðj0Þ sin j0 þ C0
mðj0Þ cosj0

3
75: ð35Þ
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The equilibrium state in terms of zðtÞ and ’zðtÞ is

zðtÞ ¼ z0 ¼ G�1
k b ¼

#x þ m3m6Cdðj0Þ

#y þ
2m3m6Clðj0Þ � m2

2g2

0

2
6664

3
7775 ¼

x0

y0

0

2
64

3
75; ’zðtÞ ¼ 0: ð36Þ

Linearized stability follows by writing

zðtÞ ¼ z0 þ *zðtÞ: ð37Þ

So

’wðtÞ ¼ GwðtÞ; ð38Þ

where

w ¼
*z

’*z

" #
; G ¼

0 I

�G�1
m Gk �G�1

m Gd

" #
; ð39Þ

and I is the 3� 3 identity matrix.
Solutions to the system (38) govern the small amplitude wind-rain induced vibrations in the

deterministic model. By adding linear stochastic terms a stochastic model arises along the lines
discussed in Ref. [11].
The circumferential oscillations of the rivulet and the transverse oscillations of the cable are

completely coupled due to the coupled mass, damping and stiffness matrices. The onset of
unstable, aerodynamically induced vibration is determined by the eigenvalues of the system
matrix G: The equilibrium state is stable at the linearized level if and only if all eigenvalues of G
have negative real parts, i.e., G is a Hurwitz matrix. The equilibrium state is unstable if at least
one of the eigenvalues of G has a positive real part. The equilibrium state is critical if all
eigenvalues of G have non-positive real parts and there exists at least one critical eigenvalue
(having zero real part).
Linearized stability conditions can be determined by the Hurwitz criterion [24] without actually

solving the full eigenvalue problem. However, the determination of the eigenvalues and the
corresponding eigenvectors of the system matrix G provides valuable insights into the behaviour
of the wind-rain induced vibrations under discussion. It is convenient to introduce a measure that
indicates the nature of the normal mode associated with any particular eigenvector cj with
components cjk and complex conjugate transpose c

w
j : In particular, for j ¼ 1; 2;y; 6 let

dj ¼
jcj3j

2 þ jcj6j
2

cw
j cj

be a measure of the torsional content associated with the eigenvector cj:
If djC1; the corresponding jth eigenmode is dominated by the circumferential motion of the

rivulet. If djC0; the corresponding eigenmode is dominated by the translational motion of the
cable. Depending on initial conditions of course, a general motion will be a superposition of such
eigenmodes.
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The details of this model include a choice for the parameter Rc: Yamaguchi [5] asserted that the
relative velocity Ur is characterized only by the speed of the rivulet and he took Rc ¼ R; the radius
of the cross-section of the cable. In the model here the appropriate choice is dependent on the
damping parameters and the nature of the rivulet. Based on an analysis of this linearized system
for a range of such parameters and the observed data for the onset of wind-rain induced
vibrations, it is evident that Rc should be small compared to the cable radius and related to the
thickness of the rivulet. The effects of Rc on the behaviour of the system are discussed in the
following and it is concluded that RcC0 is a better choice under realistic light wind conditions for
both mechanically light and heavily damped cables.

3. Numerical results and discussion

Analyzing the dynamic behaviour of the system from the linearized perspective requires the
determination of the eigenvalues and eigenvectors of the system matrix. In this section, numerical
calculations based on (38) are carried out using the following parameters. The diameter D and the
mass m per unit length of the stay cable are chosen as 180 mm and 68 kg=m; respectively. The air
density is taken as 1:293 kg=m3: The cable is assumed to be at the first ‘‘cross-over’’ point [25], so
that the frequency ratio of the first in-plane mode to the first out-of-plane mode is almost 2.0. The
lateral stiffness of the cable per unit length, kx; is assumed to be 1600 N=m2; and g ¼ 2:2: Thus,
o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx=ðm þ mrÞ

p
¼ 4:833 rad=s:

The appropriate (time averaged) drag, lift and moment coefficients for a cylinder with a fixed
upper artificial rivulet are taken from wind tunnel tests. Experimental values of such steady wind
force coefficients for an aluminium circular cylinder with a fixed artificial rivulet (a solid cylinder
of diameter d with d=D ¼ 0:1), were reported in [5] as shown in Fig. 3.1 The aerodynamic
coefficient curves depicted in Fig. 3 are fitted first to express the coefficients as the functions of the
attack angle a and then to obtain the derivatives of different orders. The ratio, d=D ¼ 0:1; was
chosen in [5] for studying the effects of such an artificial rivulet on cable forces in a steady wind.
Such a ratio is probably rather large in the context of a rain rivulet in a stay cable. Based on this
ratio and assuming that the density of water is 1000 kg=m3; the mass of the rivulet per unit length
is calculated to be 0:254 kg=m:
According to wind tunnel tests that reproduce rain conditions [1], the static angle j0 of the

rivulet2 is a function of the mean wind speed U ; as shown in Fig. 4.
Employing the relation between the static angle j0 of the rivulet and mean wind speed, the

entries of the system matrix G are functions of mean wind speed U ; damping coefficients cx; cy; cf
and the characteristic radius Rc: Suppose, for some particular integer m; the eigenvalue lm has the
largest real part in the spectrum and write:

d � dm; LðU ;RcÞ � RðlmðU ;RcÞÞ: ð40Þ

The quantity L will be referred to as the stability index and d as the eigenmode character.
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1The reference position of the angle of attack is different from that in Ref. [5].
2The reference position j0 is different from that in Ref. [1].
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For a lightly damped cable the structural damping coefficients are assumed to be cx ¼
0:96 N s=m2 and cy ¼ 0:96g ¼ 2:112 N s=m2 corresponding to a 0.15% damping ratio. The
viscous damping coefficient between the rivulet and cable surface upon which it rests, cf; is
assumed to be 0:01 N s=m throughout. For such damping coefficients the stability domain
LðU ;RcÞo0 depicted in Fig. 5 shows the effect of mean wind speed U from 9 m=s to 16 m=s and
the characteristic radius Rcp0:012 m on linearized stability. Thus the motion of the coupled
cable-rivulet system is stable in the range of wind speed from 9.3 to 12:5 m=s for small
characteristic radius Rc: The value of LðU ;RcÞ increases as Rc increases in the stable range of wind
speed. When Rc becomes large enough ðRc > 0:012 m ¼ 2R=15Þ the system becomes (linearly)
unstable except for a small range of wind speed around 12:5 m=s: Large amplitude wind-rain
oscillations of cables with R ¼ 0:09 m have been observed to develop only at certain wind tunnel
speeds. These would not be predicted in the model if the characteristic radius Rc were chosen to be
close to R at this damping level.
Information about the eigenvector characteristics can be inferred from the corresponding value

of d shown in Fig. 6. It can be seen from Figs. 5 and 6 that, for most points in the unstable range, d
is greater than 0.9.
It is worth noting that the eigen-behaviour is dominated by the circumferential motion of the

rivulet in the unstable region except for two small ranges which are depicted in detail in Fig. 7.
When the system is unstable and dominated by the circumferential motion of the rivulet, the
rivulet may move to a new equilibrium state or break contact with the cable, depending on the
value of normal force N : Thus, the ‘‘unstable’’ regions where dC1 should not be interpreted as
domains necessarily leading to large amplitude oscillations of the stay cable. On the other hand
for do0:9 say, in such a domain, an initial displacement and/or velocity of the rivulet might cause
large amplitude oscillation of the cable. According to the model this could occur with wind speeds
between 9.25 and 9:26 m=s and in the interval from 12.60 to 12:64 m=s as shown in Fig. 7.
These general considerations are borne out in numerical simulations based on the linearized

equation (38). In the following figures one may observe how certain initial conditions determine
the onset of vibration and how such vibrations are dominated by certain eigen-modes. With
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X0 ¼ Dx0 and Y0 ¼ Dy0 where x0 and y0 are given by (36), displacement time histories are shown
in Figs. 8 and 9 for wind speeds U ¼ 9:254 and 12:605 m=s and Rc ¼ 0:0; respectively. The same
initial conditions X ð0Þ � X0 ¼ Y ð0Þ � Y0 ¼ 0:0;fð0Þ ¼ 0:1 rad and ðdX=dTÞð0Þ ¼ ðdY=dTÞð0Þ ¼
ðdf=dTÞð0Þ ¼ 0 were assumed to illustrate the initiation of cable oscillations from an initial
angular position of the rivulet. Both U ¼ 9:254 m=s and U ¼ 12:605 m=s with Rc ¼ 0:0 are
located in the unstable region with dp0:9: From Figs. 8 and 9 it can be seen that the growing
transverse oscillations of the cable are generated from an initial circumferential displacement of
the rivulet.
Fig. 10 shows the displacement time histories for wind speed U ¼ 12:68 m=s and characteristic

radius Rc ¼ 0:0 with initial conditions of X ð0Þ � X0 ¼ 0:009 m;Y ð0Þ � Y0 ¼ 0:009 m;fð0Þ ¼ 0:1
rad and ðdX=dTÞð0Þ ¼ ðdY=dTÞð0Þ ¼ ðdf=dTÞð0Þ ¼ 0: In this case the circumferential motion of
the rivulet is not oscillatory and the amplitude increases. In the linearized approximation such
behaviour is valid as long as both Do ’x=U and Do ’y=U are small.
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Displacement time histories are shown in Figs. 11–13 for wind speed U ¼ 10:50 m=s with
Rc ¼ 0:0;Rc ¼ 0:005 m ¼ 0:055R; and Rc ¼ 0:01 m ¼ 0:11R; respectively. The same initial
conditions X ð0Þ � X0 ¼ Y ð0Þ � Y0 ¼ 0:0; fð0Þ ¼ 0:1 rad and ðdX=dTÞð0Þ ¼ ðdY=dTÞð0Þ ¼
ðdf=dTÞð0Þ ¼ 0 have been used in the simulations. Both cases of Rc ¼ 0:0 and 0.005 are located
in the stable range. From Figs. 11 and 12 it can be seen that, in this situation, the system is stable.
As the characteristic radius Rc increases for the damping considered, however, the system

becomes unstable. The case of U ¼ 10:50 m=s with Rc ¼ 0:01 m is located in the unstable range
with eigenmode character d > 0:9: In this case the amplitude of the circumferential oscillation of
the rivulet increases with time, while the transverse oscillation of the cable are non-increasing in
the first 50 s as shown in Fig. 13.
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The effect of mechanical damping on the system is determined by the parameters cx; cy; and cf:
The stability domains for larger values of Rc and larger damping than indicated in the
corresponding Figs. 5–13 have been calculated and results displayed in Figs. 14 and 15 for
comparison. It can be seen that as the characteristic radius Rc increases the more heavily damped
system can still become unstable.
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4. Estimate of aerodynamic forces and torques from vortex methods

The model constructed above relies on time averaged wind-tunnel data for the aerodynamic
forces Fp; fp and torqueMp: This data has been extracted from a series of specific forces FTot and
torquesMTot derived from measurements on fixed cylinders with fixed (artificial) rivulets. In order
to effect this extraction one assumes that the aerodynamic flow around such fixed configurations
does not depart too much from that around moving configurations with attached mobile rivulets.
One way to test this hypothesis would be to employ computational fluid dynamics in conjunction
with the equations of motion derived in Section 2 to calculate Fp; fp;Mp in the presence of moving
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boundaries. Such a calculation would be computationally intensive and time consuming.
However, for the light winds under consideration the Reynolds number of relevance to this
problem is expected to be sub-critical and ‘‘discrete vortex’’ methods (see Ref. [26] for a review) in
an inviscid incompressible fluid offer a viable alternative. In such an approach a simple two-
dimensional boundary layer model can be used to estimate the dynamical position of points on
the disc perimeter where boundary layer separation occurs. Such points can be used to locate the
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emission of vorticity (using the ‘‘no-slip’’ boundary conditions at the moving boundary [27]) in the
form of point vortices (see Fig. 16).
By superposing a series of such fluid configurations on the incident wind flow one may

construct a dynamic model of the flow around a moving disc with a (small) mobile rivulet. The
corresponding pressure field may be used at each instant to calculate the aerodynamic forces and
torques on the cylinder-rivulet system which then responds dynamically according to the
equations of motion in Section 2. The emitted vortices can be tracked numerically along with the
motion of the cylinder and rivulet. For discs with a circular boundary in such 2-D air flow,
complex variable methods exist for the construction of analytic expressions for the fluid velocity
field and hence instantaneous integrated dynamic forces on the disc. This approach was used by
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Sarpkaya [28] in a series of investigations of flow around fixed circular cylinders and the results
compared favourably with experiments in sub-critical domains of flow. A number of the
algorithms employed by Sarpkaya have been modified and similar techniques used in Refs.
[28–30] to discuss the fluid–structure interaction on moving cylinders. Such methods permit one to
employ complex mappings to construct analogous expressions appropriate to moving discs with
non-circular boundaries. A fuller account of such techniques can be found in Refs. [27,30].
As has been argued above the torsional stiffness of the stay cable ensures that one may neglect

any rotational motion of the disc about an axis through its centroid. Thus one needs to estimate
the 2-D aerodynamic forces at each instant on an arbitrarily translating circular disc with a small
protuberance (the rivulet) in 2-D. The forces (torques) contain a component proportional to the
acceleration (angular acceleration) of the system and a remainder. Since the density of air is small
the former simply adds a small effective mass (rotary inertia) to the mass (rotary inertia) of the
system and is of no consequence. Both components can be calculated from the vortex induced
forces and torques on a circular disc by effecting the complex transformation below that maps a
circle to a particular closed curve that simulates the cross-section of a cylinder with an attached
rivulet.
To describe this map let the complex variable z ¼ x þ iy describe points fx; yg in the plane in

which the circle resides.
If

#z ¼ f ðzÞ ¼ z þ
ahrR

2e2iðp�jÞ

z � bReiðp�jÞ; ð41Þ

then the circle at C; (i.e., jzj ¼ R), maps into the contour f ðCÞ illustrated in Fig. 17 with j ¼ p=4
and h ¼ hrR with hr ¼ 0:1: This contour will be taken to model the cross-section of the cable with
attached rivulet. Thus j locates the direction of the centroid of the rivulet of height h ¼ hrR and
the dimensionless parameters a; b are chosen to be a ¼ 0:25 and b ¼ 0:75:
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In Fig. 17 the pole of f ðzÞ and zeros of df ðzÞ=dz are marked and are inside the contour for the
parameters specified. This ensures that expressions involving f ðzÞ and df ðzÞ=dz on the contour will
be regular.
In the plane in which C resides denote the relative incident wind velocity vector (with respect to

translational motion of the disc) by the complex number U: The total relative air velocity outside
the circle C is represented by the instantaneous complex (conjugate) velocity %VðzÞ: The
corresponding complex velocity outside f ðCÞ is %Vðf �1ð#zÞÞ df �1ð#zÞ=d#z: The field %V is constructed
from U and the flow due to a number of point vortices at (complex) instantaneous positions z0j

each with an instantaneous vortex strength Gj (which is real):

%VðzÞ ¼ %U�U
R2

z2
þ %VvðzÞ; ð42Þ

where the total flow due to a finite number of point vortices is described by the complex velocity:

%VvðzÞ ¼
X

j

Gj

2pi
1

z � z0j

�
1

z � R2=%z0j

� �
: ð43Þ

The number of terms in the above sum is dynamical and determined by conditions at the complex
separation points fzþ; z�g on the disc perimeter where the subscript indicates the sign of vorticity
emanating from that point. The domain of zþðz�Þ is taken to be the lower (upper) part of the circle
C with diameter in the wind direction U: Each vortex is born at either z ¼ zþ or z ¼ z� with
instantaneous strength

G7 ¼ 71
2
j %Vðz7Þj2DT ð44Þ
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depending on its birthplace (see Fig. 17). DT is the time step used to evolve the vortices in a
numerical simulation of (45), which is chosen to be DT ¼ 0:2R=jUj i.e. one-tenth of the Strouhal
period. For simplicity the vortices in the C plane are evolved according to

d%z0j

dT
¼ lim

z-z0j

%VðzÞ �
Gj

2pi
1

z � z0j

� �
: ð45Þ

Strictly speaking the pole subtraction in (45) should occur in the f ðCÞ plane, leading to Routh’s
formula for the vortex velocity on the C plane (see for example Ref. [26]). However, it is expected
that the corrections to (45) will be minor given the details of f and the distance of the majority of
the vortices from the rivulet. A similar comment should be made about using the velocity in the C
plane rather than that in the f ðCÞ plane to calculate the nascent vortex strengths in (44). The
hypothesis is that by far the most significant consequence of the presence of the rivulet, in
comparison with the situation involving just a circular disc, is the modification of the location of
the upper separation point. Corrections to the vortex strengths and velocities (in the C plane)
stemming directly from f will be ignored. This point will be further discussed shortly. On
examining (42) and (43) it is seen that U is also the incident wind complex velocity in the f ðCÞ
plane because #z ¼ f ðzÞBz for jzjcR:
Once the acceleration dependent contribution to the time dependent force has been removed the

lift and drag forces on the closed (moving) contour f ðCÞ can be extracted from the complex
force F:

%F ¼ ra

Z
C

i %V2

2f 0 d z � ra

d

dT

Z
C

i %f Vv d%z:

Similarly, the torque on the body bounded by f ðCÞ through an axis close to its area centroid is

k 
MTot ¼ �raR

Z
C

1

2

f

f 0
%V2dz

� �
þ ra

d

dT

Z
C

1
2

f %f %Vv dz:

The first term on the right is denoted �M1 and the second M2: It can be seen that in the
simulations as shown in Fig. 18, the first term is the dominant one.
Since the torque on a non-rotating rigid circular disc in 2-D potential flow is zero and the disc

perimeter is close to a circle, it is expected that this formula will give a reasonable approximation
to the instantaneous aerodynamic torque k 
mp on the rivulet.
To implement these ideas it is necessary to model the behaviour of boundary layer separation,

i.e., fzþ; z�g is needed at each time step. On smooth blunt nosed objects, such as the leading edge
of a wing, Thwaites’ method [31] offers an economical model to locate boundary layer separation.
It is also effective on the boundary of a mobile circular cylinder provided the separation points do
not come too close. However, it is not expected that the method will be suitable in the vicinity of a
rivulet. In 2-D a disc is adopted as before with a single rivulet located by the dynamic clockwise
angle jop measured from the wind inflow direction. Since the rivulet is not expected to migrate
too far from its initial position due to aerodynamic pressure forces a model is adopted in which
vortex separation occurs in the lower portion of the disc according to Thwaites’ method applied in
the C plane. For separation on the remaining portion of the boundary a simple heuristic is
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adopted. For some constant j� the second (upper) dynamic separation point is taken to occur at

z� ¼
z0 if z0ozT ;

zT if z0XzT ;

(
ð46Þ

where

z0 ¼ 1
4
pþ jj� � jj ð47Þ

and zT is the upper separation point determined by Thwaites’ method obtained by ignoring the
rivulet i.e., again applied in the upper C plane (see Fig. 19). The motivation for (46) is the
expectation that the rivulet will be flattened due to the impinging wind, and so have a diminished
effect on separation, when it is near to j ¼ 0: This heuristic also attempts to recognise that
Thwaites’ method should be modified when it predicts vortex separation in the vicinity of the
rivulet.
The value of j� is determined to be 35p=180 rad by numerical experiment to give as close a fit

as possible to the measured averaged aerodynamic forces on a fixed cylinder with a fixed rivulet
with angle of attack location a ¼ j (see Fig. 3). In Figs. 20–22 a sample of torque histories, lift,
drag and torque coefficients for fixed discs with fixed rivulet at j ¼ 40�; 50� and 60� are displayed
for such a j�: Although the fit involves time averages the associated time histories are not
sensitive to this value 75�:
For j in the range from 20� to 100� such curves can be averaged over a given period of time T

and the results compared with the wind tunnel date typically displayed in Fig. 3. The smoothed
results for the averaged lift, drag and torque coefficients over TC1 second are presented as a
function of j between 20� and 70�: Reasonable comparison with the wind tunnel data is found in
this domain as shown in Fig. 23 and provides confidence in the aerodynamic modelling for the
moving disc and rivulet.
Displacement time histories for the fully coupled non-linear system in which the aerodynamic

forces induce motion of the cable with moving rivulets are shown in Fig. 24. The corresponding
dynamical drag, lift and torque are depicted in Fig. 25.

ARTICLE IN PRESS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 -2.5

 -2

 -1.5

 -1

 -0.5

0

0.5

1

1.5

T (sec)

M
1, M

2

Fig. 18. The time history for the components of the torque on a fixed cylinder with a fixed rivulet at j ¼ 40� and

hr ¼ 0:2;FM1 and – 
 – M2:

D. Burton et al. / Journal of Sound and Vibration 279 (2005) 89–117 111



5. Conclusions

A system of equations of motion has been analyzed in order to explore the motion of a single
straight stay cable in a light wind-rain environment. In addition to gravity the forces on the cable
have been modelled in terms of an aerodynamic interaction with an asymmetric 2-D cross-section.
This asymmetry is a result of the formation on the cable of a rivulet that may move relative to it.
The basic equations of motion of necessity involve a coupling to a wind velocity field and adhesive
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forces that bind the rivulet to the surface of the cable. In the first approach a single (upper) rivulet
is considered and the equations of motion simplified using time-averaged wind-tunnel data and a
parameter Rc: In this approximation a linearized stability analysis has been performed and the
dependence of the vibration spectra on Rc and the ambient wind speed explored for various values
of the mechanical damping. The eigen-modes contain motions which involve an oscillatory rivulet
on a laterally vibrating cable. For certain values of the parameters in the model such motions
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become unstable in the linear approximation. To go beyond this approximation an alternative
approximation has been considered that does not rely on time-averaged wind-tunnel data and the
dependence of the predictions on the parameter Rc: In this approximation two boundary layer
separation algorithms were used to simulate the fluid–structure interaction. This in turn was based
on a simple boundary layer separation heuristic in which air vorticity in the vicinity of the
boundary was concentrated into point vortices that were periodically shed from the cable surface.
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The lower moving boundary separation point zþ was determined by Thwaites’ method. The
moving upper boundary-layer separation point z� was determined both by Thwaites’ method and
a criterion designed to accommodate the presence of the rivulet. The criterion was expressed in
terms of a parameter j� which was determined to fit the measured average aerodynamic forces on
a fixed cylinder with a fixed rivulet. A sequence of time histories of the resulting non-linear system
has been presented and may be compared with results obtained in the linear model.
One significant result that may be inferred from the results of the second approach to the non-

linear model is the manner in which it matches well to the measured time averaged values of the
drag, lift and torque coefficients for a fixed rivulet on a fixed cylinder using the single parameter
j� and reasonable damping parameters. This gives some confidence in the dynamical results that
follow from this choice of j�:
Ultimately, without recourse to detailed fluid dynamical modelling, a commitment to some level

of heuristics is inevitable in a system of the type considered here. The two approaches studied
above attempt in a simple way to capture some of the physical essentials inherent in the relevant
fluid–structure interaction with as few adjustable parameters as possible. The first has the virtue
that it employs measured data (that can accommodate different cable surface characteristics)
albeit in an average manner and gives rise to a linear eigenvalue problem. The second approach,
while more prescriptive, attempts to capture a particular aerodynamic mechanism that permits
one to analyze the subtle non-linearities inherent in the equations of motion. The fact that these
two approaches produce results with a common overlap is one of the main results of this
investigation. The second approach yields a rich dynamic structure and the immediate potential to
go beyond the straight cable configuration considered here. It also sheds light on the results of a
number of earlier investigations that are limits of the first approach. Both yield results that we feel
contribute to a deeper understanding of light rain-wind induced vibrations of slender cables.
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